

DESIGN OF RECYCLE REACTORS

LEARNING OBJECTIVES

- At the end of this week's lecture, students should be able to:
 - Define and illustrate what recycle reactors are.
 - Develop performance equation for recycle reactors.
 - Evaluate performance of recycle reactors

Department of Chemical Engineering, LMU

South RK Units Care

RECYCLE REACTORS

• WHAT IS A RECYCLE REACTOR?

Figure 6-1 Nomenclature for the recycle reactor

- This represents when the product stream from a plug flow reactor is divided and a portion of it is returned to the entrance of the reactor.
- The recycle ratio R can be defined as

 $R = \frac{\text{volume of fluid returned to the reactor entrance}}{\text{volume leaving the system}}$

6-1

- The recycle ratio can be made to vary from zero to infinity.
- As **R** is raised the behavior shifts from PFR (R = 0) to MFR ($R = \infty$).

Contraction of the second seco

PERFORMANCE EQUATION OF RECYCLE REACTOR

- Thus, recycling provides a means for obtaining various degrees of back-mixing with a plug flow reactor.
- Developing the performance equation for the recycle reactor is as shown below,

• Taking a balance across the reactor itself i.e. for plug flow gives

$$\frac{V}{F'_{A0}} = \int_{X_{A1}}^{X_{A2}=X_{Af}} \frac{dX_A}{-r_A}$$
 6-2

- where F'_{A0} would be the feed rate of A if the stream entering the reactor (fresh feed plus recycle) were unconverted.
- Since F'_{A0} and X_{A1} are not known directly, they must be written in terms of known quantities before Eq. 6-2 can be used.

PERFORMANCE EQUATION OF RECYCLE REACTOR

• The flow entering the reactor includes both fresh feed and the recycle stream. Measuring the flow split at point L we then have

$$F'_{A0} = \begin{pmatrix} A \text{ which would enter in an} \\ \text{unconverted recycle stream} \end{pmatrix} + \begin{pmatrix} A \text{ entering in} \\ \text{fresh feed} \end{pmatrix}$$

$$= \mathbf{R}F_{A0} + F_{A0} = (\mathbf{R} + 1)F_{A0}$$
 6-3

Also, X_{A1} could be evaluated as

$$X_{A1} = \frac{1 - C_{A1}/C_{A0}}{1 + \varepsilon_A C_{A1}/C_{A0}}$$
 6-4

 At constant pressure, the streams meeting at point K may be added directly giving,

$$C_{A1} = \frac{F_{A1}}{v_1} = \frac{F_{A0} + F_{A3}}{v_0 + Rv_f} = \frac{F_{A0} + RF_{A0}(1 - X_{Af})}{v_0 + Rv_0(1 + \varepsilon_A X_{Af})}$$
$$= C_{A0} \left(\frac{1 + R - RX_{Af}}{1 + R + R\varepsilon_A X_{Af}}\right)$$
6-5

PERFORMANCE EQUATION OF RECYCLE REACTOR

• Combining Eqs. 6-4 and 6-5 gives X_{AI} in terms of measured quantities, or $(R)_{V}$

$$X_{\rm A1} = \left(\frac{R}{R+1}\right) X_{\rm Af} \tag{6-6}$$

• Finally, on replacing Eqs. 6-3 and 6-6 in Eq. 6-2 we obtain the useful form for the performance equation for recycle reactors, good for any kinetics, any \mathcal{E} value and for $X_{A0} = 0$.

•
$$\frac{V}{F_{A0}} = (\mathbf{R}+1) \int_{\left(\frac{\mathbf{R}}{\mathbf{R}+1}\right) X_{Af}}^{X_{Af}} \frac{dX_A}{-r_A} \dots \operatorname{any} \varepsilon_A \qquad 6-7$$

 For the special case where density changes are negligible we may write this equation in terms of concentrations, or

•
$$\tau = \frac{C_{A0}V}{F_{A0}} = -(\mathbf{R}+1) \int_{\frac{C_{A0}+\mathbf{R}C_{Af}}{\mathbf{R}+1}}^{C_{Af}} \frac{dC_{A}}{-r_{A}} \dots \varepsilon_{A} = 0$$
 6-8

These expressions are represented graphically in Fig. 6.2.

Figure 6-2 Representation of the performance equation for recycle reactors

7

PERFORMANCE EQUATION OF RECYCLE REACTOR

 For the extremes of negligible and infinite recycle, the system approaches plug flow and mixed flow, or

• The approach to these extremes is shown in Fig. 6-3.

Figure 6-3 The recycle extremes approach PFR (R +0) and MFR (R $\rightarrow \infty$).

9

Contraction of the second seco

PERFORMANCE EQUATION OF RECYCLE REACTOR

• For *first-order reaction*, and $\varepsilon_A = 0$, the integration of the recycle equation gives,

$$\frac{k\tau}{\mathbf{R}+1} = \ln\left[\frac{C_{A0} + \mathbf{R}C_{Af}}{(\mathbf{R}+1)C_{Af}}\right]$$

• and for second-order reaction, **2A** \rightarrow products, $-r_A = kC_A^2$ and $\varepsilon_A = 0$,

$$\frac{kC_{A0}\tau}{R+1} = \frac{C_{A0}(C_{A0} - C_{Af})}{C_{Af}(C_{A0} + RC_{Af})}$$

- The expressions for $\mathcal{E}_A \neq 0$ and for other reaction orders can be evaluated, but are more cumbersome.
- Figures 6-4 and 6-5 show the transition from plug to mixed flow as R increases

Figure 6.4 Comparison of performance of recycle reactors with PFRs for elementary first-order reactions

Figure 6.5 Comparison of performance of recycle reactors with PFRs for elementary second-order reactions

PERFORMANCE EQUATION OF RECYCLE REACTOR

 A match of these curves with those for N tanks in series gives the following rough comparison for equal performance:

No. of tanks	R for first-order reaction					R for second-order reaction			
	at $X_{\rm A}$ =	0.5	0.90	0.99	at $X_A =$	0.5	0.90	0.99	
1		8	8	8		8	ø	8	
2		1.0	2.2	5.4		1.0	2.8	7.5	
3		0.5	1.1	2.1		0.5	1.4	2.9	
4		0.33	0.68	1.3		0.33	0.90	1.7	
10		0.11	0.22	0.36		0.11	0.29	0.5	
œ		0	0	0		0	0	0	

 The recycle reactor is a convenient way for approaching mixed flow with what is essentially a plug flow device. Its particular usefulness is with solid catalyzed reactions with their fixed bed contactors

THANK YOU FOR YOUR **ATTENTION! ANY QUESTIONS?**